641 research outputs found

    Bio-inspired neuromuscular reflex based hopping controller for a segmented robotic leg

    Get PDF
    It has been shown that human-like hopping can be achieved by muscle reflex control in neuromechanical simulations. However, it is unclear if this concept is applicable and feasible for controlling a real robot. This paper presents a low-cost two-segmented robotic leg design and demonstrates the feasibility and the benefits of the bio-inspired neuromuscular reflex based control for hopping. Simulation models were developed to describe the dynamics of the real robot. Different neuromuscular reflex pathways were investigated with the simulation models. We found that stable hopping can be achieved with both positive muscle force and length feedback, and the hopping height can be controlled by modulating the muscle force feedback gains with the return maps. The force feedback neuromuscular reflex based controller is robust against body mass and ground impedance changes. Finally, we implemented the controller on the real robot to prove the feasibility of the proposed neuromuscular reflex based control idea. This paper demonstrates the neuromuscular reflex based control approach is feasible to implement and capable of achieving stable and robust hopping in a real robot. It provides a promising direction of controlling the legged robot to achieve robust dynamic motion in the future

    Study of Υ\Upsilon production in ppPb collisions at sNN=8.16\sqrt{s_{NN}}=8.16 TeV

    Get PDF
    International audienceThe production of ϒ(nS) mesons (n = 1, 2, 3) in pPb and Pbp collisions at a centre-of-mass energy per nucleon pair sNN=8.16 \sqrt{s_{\mathrm{NN}}}=8.16 TeV is measured by the LHCb experiment, using a data sample corresponding to an integrated luminosity of 31.8 nb1^{−1}. The ϒ(nS) mesons are reconstructed through their decays into two opposite-sign muons. The measurements comprise the differential production cross-sections of the ϒ(1S) and ϒ(2S) states, their forward-to-backward ratios and nuclear modification factors. The measurements are performed as a function of the transverse momentum pT_{T} and rapidity in the nucleon-nucleon centre-of-mass frame y^{*} of the ϒ(nS) states, in the kinematic range pT_{T} < 25 GeV/c and 1.5 < y^{*} < 4.0 (−5.0 < y^{*} < −2.5) for pPb (Pbp) collisions. In addition, production cross-sections for ϒ(3S) are measured integrated over phase space and the production ratios between all three ϒ(nS) states are determined. Suppression for bottomonium in proton-lead collisions is observed, which is particularly visible in the ratios. The results are compared to theoretical models

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Long-range angular correlations on the near and away side in p&#8211;Pb collisions at

    Get PDF

    Centrality dependence of inclusive J/ψ production in p-Pb collisions at s N N = 5.02 sNN=5.02 \sqrt{s_{\mathrm{NN}}}=5.02 TeV

    Full text link

    A 64-by-64 pixel-ADC matrix

    No full text
    An 8-bit 5-MS/s Wilkinson-type analog-to-digital converter (ADC) cell has been designed for parallel in-pixel digitization in a 64-by-64 pixel readout ASIC. Due to its simplicity, low power consumption, and small area requirement this type of ADC is suitable for pixel-level implementations. 720-ps time stamps are generated globally by means of 8-bit Gray-code counters. They are distributed column-wise to the pixel blocks together with a conversion-start signal along 13-mm long transmission lines. The analog input voltage is sampled-and-held on a capacitor. A pixel-internal current source is used to generate a voltage ramp. The conversion into a digital word is done when the ramp voltage equals the reference voltage, and the corresponding time stamp is latched. The ASIC is fabricated in IBM's 130-nm CMOS technology. The pixel-wise gain trimming properties provide a homogeneous gain distribution. Full matrix measurements demonstrate the achievement of a signal-to-noise ratio of 70 dB when all 4096 ADCs are working simultaneously. 75 % of the pixels show DNL better than 0.4 LSB, and the INL remains within ± 0.5 LSB for 99% of the pixels. The area and power dissipation of the in-pixel ADC amounts to 100 × 120 μm2 and 150 μW at 1.2-V power supply, respectively

    Tumour-Derived Cell Lines and Their Potential for Therapy Prediction in Patients with Metastatic Colorectal Cancer

    No full text
    The prognosis of metastatic colorectal cancer (CRC) remains poor. Patients and physicians are in need of individual therapies and precise response predictions. We investigated the predictive capacity of primary tumour material for treatment response of metastases. Mutational landscapes of primary tumours and corresponding metastases of 10 CRC patients were compared. Cell line characteristics and chemosensitivity were investigated pairwise for primary and metastatic tumours of four patients. PDX models of one patient were treated in vivo for proof of concept. Driver mutations did not differ between primaries and metastases, while the latter accumulated additional mutations. In vitro chemosensitivity testing revealed no differences for responses to 5-FU and oxaliplatin between primary and metastatic cell lines. However, irinotecan response differed significantly: the majority of metastases-derived cell lines was less sensitive to irinotecan than their matching primary counterpart. Therapy recommendations based on these findings were compared to clinical treatment response and mostly in line with the predicted outcome. Therefore, primary tumour cell models seem to be a good tool for drug response testing and conclusion drawing for later metastases. With further data from tumour-derived cell models, such predictions could improve clinical treatment decisions, both recommending likely effective therapeutic options while excluding ineffective treatments

    First operation of a DSSC hybrid 2D Soft X-ray imager with 4.5 MHz frame rate

    No full text
    The DSSC (DEPFET Sensor with Signal Compression) collaboration develops a hybrid pixelated X-Ray photon detector with 4.5 MHz frame rate and immediate amplitude digitization for experiments at the European XFEL. We present the first full format 14.9Ã\u9714 mm2F1 pixel readout ASIC for the DSSC detector. The readout architecture is specially adapted to the burst structure of the XFEL (bursts of 2880 pulses spaced by down to 220 ns at a rate of 10 Hz) by in-pixel digitization and digital hit data storage and data transfer during the burst gaps. The readout ASIC contains 64Ã\u9764 pixels of 229Ã\u97204 μm2size and includes per pixel two low noise front-end versions for DEPFET and silicon drift detectors (SDD), a single-slope 8-bit ADC and local memory. Measurements using the F1 ASIC and a matching mini-SDD sensor matrix are shown

    The DSSC Pixel Readout ASIC with Amplitude Digitization and Local Storage for DEPFET Sensor Matrices at the European XFEL

    No full text
    The DSSC (DEPFET Sensor with Signal Compression) consortium develops a 1MPixel detector for low energy X-rays at the European XFEL. The XFEL will produce 10 bursts per second, each containing 2880 X-ray pulses with a repetition rate of 4.5 MHz. X-ray photons of 0.5 − 6 keV are absorbed in hexagonal DEPFET pixels of 229x204 um^2 pitch with a nonlinear characteristic to achieve a high dynamic range. The sensors will be bump bonded to readout ASICs of 64x64 pixels. Each pixel contains a filter with trapezoidal weighting function, a single slope ADC of 8-9 Bit resolution and a digital memory to store 640 events. A veto mechanism allows to discard uninteresting events. The digital hit data is read out serially during the ≈ 100 ms long burst gaps. Prototype matrix chips of 8x8 pixels with the full functionality have been produced and characterized electronically and with DEPFET sensors. The architecture and the design of the 8x8 ASIC, measured results and an outlook to the large 64x64 pixel chip will be presented

    Where Brain, Body and World Collide

    Get PDF
    The production cross section of electrons from semileptonic decays of beauty hadrons was measured at mid-rapidity (|y| &lt; 0.8) in the transverse momentum range 1 &lt; pt &lt; 8 Gev/c with the ALICE experiment at the CERN LHC in pp collisions at a center of mass energy sqrt{s} = 7 TeV using an integrated luminosity of 2.2 nb^{-1}. Electrons from beauty hadron decays were selected based on the displacement of the decay vertex from the collision vertex. A perturbative QCD calculation agrees with the measurement within uncertainties. The data were extrapolated to the full phase space to determine the total cross section for the production of beauty quark-antiquark pairs
    corecore